10座实验性小屋,探讨材料与建造

10座实验性小屋,探讨材料与建造插图 IBA Timber Prototype House / ICD University of Stuttgart. Image Courtesy of ICD University of Stuttgart

    尽管符号上的“小屋”形象始终停留在遗世独立的乡村木屋,建筑师们尝试着从材料与建造技术的角度,赋予“小屋”以新的定义。无论是探讨小屋的美学,还是通过先进制造技术实现乡村现代化,亦或对木制小屋进行调整以适应城市布局,都是建筑师对“小屋”现代性的探索与实践。以下是我们精选的10个实验性小屋,其目的与功能各异,尝试对建造材料与建造技术进行重新考量,在预制装配、建筑可持续性,以及对材料的优化方面有着相似之处。

     

    IBA原型木屋 / 斯图加特大学计算设计学院(ICD)

    这座位于斯图加特的小屋结合了传统的建筑木作工艺与先进的制造技术,创建了一个高度精确的垂直框架系统。该系统利用木材的可持续性特点与数字化设计技术,通过在水平方向上扭转一定角度,在室内外立面上形成了使切应力作用效果可视化的错动,同时亦提高了结构尺度的稳定性和墙体的绝缘性。图例可以体现材料特性与制造技术结合所实现的构件精度。

    10座实验性小屋,探讨材料与建造插图1 IBA Timber Prototype House / ICD University of Stuttgart. Image © Thomas Mueller

    10座实验性小屋,探讨材料与建造插图2 IBA Timber Prototype House / ICD University of Stuttgart. Image © Thomas Mueller

    10座实验性小屋,探讨材料与建造插图3 IBA Timber Prototype House / ICD University of Stuttgart. Image © Thomas Mueller

    10座实验性小屋,探讨材料与建造插图4 IBA Timber Prototype House / ICD University of Stuttgart. Image © Thomas Mueller

    10座实验性小屋,探讨材料与建造插图5 IBA Timber Prototype House / ICD University of Stuttgart. Image © Hans Drexler

    “隐”居 - Abé / The Cloud Collective

    这批为大规模定制和生产而设计的房屋在保证设计质量的同时,采用特殊的3D软装和预制装配系统,以优化时间和制造成本。小屋以一种自给自足的浪漫主义态度回归自然,可由客户定制,并在两天内完成运输和建造。这也证明了传统小屋辅以尖端制造技术后,作为非常规的设计系统的可能性。

    10座实验性小屋,探讨材料与建造插图6 The Hermit Houses - Abé / The Cloud Collective. Image Courtesy of the Cloud Collective

    10座实验性小屋,探讨材料与建造插图7 The Hermit Houses - Abé / The Cloud Collective. Image Courtesy of the Cloud Collective

    10座实验性小屋,探讨材料与建造插图8 The Hermit Houses - Abé / The Cloud Collective. Image Courtesy of the Cloud Collective

    10座实验性小屋,探讨材料与建造插图9 The Hermit Houses - Abé / The Cloud Collective. Image Courtesy of the Cloud Collective

    10座实验性小屋,探讨材料与建造插图10 The Hermit Houses - Abé / The Cloud Collective. Image Courtesy of the Cloud Collective

    橄榄树屋 / Eva Sopeoglou

    这座希腊小屋采用CAD技术实现了不同功能的融合,完美地融入了场地的自然环境。小屋不仅所有构件都由预制而成,其结构也与基地和附近的橄榄树形成呼应。经精确穿孔加工后的绿色金属墙面总结了先前案例地经验,旨在模仿橄榄树日光下的树影,复刻室外自然环境的颜色、肌理和光感,投射于小屋之中,随时日而变换。

    10座实验性小屋,探讨材料与建造插图11 The Olive Tree House / Eva Sopeoglou. Image © Mariana Bisti

    10座实验性小屋,探讨材料与建造插图12 The Olive Tree House / Eva Sopeoglou. Image © Mariana Bisti

    10座实验性小屋,探讨材料与建造插图13 The Olive Tree House / Eva Sopeoglou. Image © Mariana Bisti

    10座实验性小屋,探讨材料与建造插图14 The Olive Tree House / Eva Sopeoglou. Image © Mariana Bisti

    10座实验性小屋,探讨材料与建造插图15 The Olive Tree House / Eva Sopeoglou. Image Courtesy of Eva Sopleoglou

    城中工作室 / Romero Silva Arquitectos

    这个建筑学生的工作室在一个月之内建成,位于一个既有建筑的顶部。设计师使用全商业标准的材料,采用干作业施工模式,以尽可能缩短建造时间。全屋除金属地板外,其余一切都由干松木制成。这座小屋的材料选择与施工方法,在简约的理念中发挥出了设计的最大可能。

    10座实验性小屋,探讨材料与建造插图16 Workshop in the City / Romero Silva Arquitectos. Image © Bruno Giliberto

    10座实验性小屋,探讨材料与建造插图17 Workshop in the City / Romero Silva Arquitectos. Image © Bruno Giliberto

    10座实验性小屋,探讨材料与建造插图18 Workshop in the City / Romero Silva Arquitectos. Image © Bruno Giliberto

    10座实验性小屋,探讨材料与建造插图19 Workshop in the City / Romero Silva Arquitectos. Image Courtesy of Romero Silva Arquitectos

    10座实验性小屋,探讨材料与建造插图20 Workshop in the City / Romero Silva Arquitectos. Image Courtesy of Romero Silva Arquitectos

    小型办公室 / delavegacanolasso

    内容推荐:富有表现力的聚碳酸酯,创造彩色半透明外墙

    该办公模块作为一个预制系统,可在60天内完成制造、运输、家具配置,并投入使用。其矩形围护结构采用Corten钢框架填充OSB杨木以及作为隔音材料的回收棉制成,家具由当地木材和机器缝制的古董织物制作,与高度机械化的预制装备形成设计上的互补,丰富了产品的性格。

    10座实验性小屋,探讨材料与建造插图21 Tiny Office / delavegacanolasso. Image © Imagen Subliminal

    10座实验性小屋,探讨材料与建造插图22 Tiny Office / delavegacanolasso. Image © Imagen Subliminal

    10座实验性小屋,探讨材料与建造插图23 Tiny Office / delavegacanolasso. Image © Imagen Subliminal

    10座实验性小屋,探讨材料与建造插图24 Tiny Office / delavegacanolasso. Image © Imagen Subliminal

    10座实验性小屋,探讨材料与建造插图25 Tiny Office / delavegacanolasso. Image Courtesy of delavegacanolasso

    Majamaja Wuorio 生态小屋 / Littow Architectes

    这一不入网的可持续预制住房单元可以支持自由运输、拆卸、装配。小屋采用太阳能电池板和燃料电池供能,配置有收集雨水、灰水的净水系统,以及将旱厕废物以肥料形式再利用的堆肥系统,因此无需接入既有水电网,避免了施工前期对环境的破坏。这些技术的应用使Majamaja小屋高度可持续,实现完全自给自足。

    10座实验性小屋,探讨材料与建造插图26 Majamaja Wuorio Eco-Cabin / Littow Architectes. Image © Marc Goodwin

    10座实验性小屋,探讨材料与建造插图27 Majamaja Wuorio Eco-Cabin / Littow Architectes. Image © Marc Goodwin

    10座实验性小屋,探讨材料与建造插图28 Majamaja Wuorio Eco-Cabin / Littow Architectes. Image © Marc Goodwin

    10座实验性小屋,探讨材料与建造插图29 Majamaja Wuorio Eco-Cabin / Littow Architectes. Image © Marc Goodwin

    住宅原型 / Luis Velasco Roldan + Ángel Hevia Antuña

    该住宅原型优先考虑能源效率,尝试利用当地材料,采用独特的隔热与获能方式,以减少其生态足迹。房屋基础采用环培混凝土基础结合钢柱,结构采用材料强度高、制造成本低的桉木建造。这一设计利用温室效应捕捉太阳能,储存于框架和石板中的浮石中,通过屋内安装的监控系统以保障室内温度的恒定。在地气候变化较大的自然环境中,良好地解决了稳定室内温度并优化围护体系隔热性能的问题。

    10座实验性小屋,探讨材料与建造插图30 House Prototype / Luis Velasco Roldan + Ángel Hevia Antuña. Image © Gori Salva

    10座实验性小屋,探讨材料与建造插图31 House Prototype / Luis Velasco Roldan + Ángel Hevia Antuña. Image © Gori Salva

    10座实验性小屋,探讨材料与建造插图32 House Prototype / Luis Velasco Roldan + Ángel Hevia Antuña. Image © Gori Salva

    10座实验性小屋,探讨材料与建造插图33 House Prototype / Luis Velasco Roldan + Ángel Hevia Antuña. Image © Gori Salva

    10座实验性小屋,探讨材料与建造插图34 House Prototype / Luis Velasco Roldan + Ángel Hevia Antuña. Image Courtesy of Luis Roldan Velasco + Angel Hevia Antuna

    Schwitzhutte汗蒸房 / Paul Johann Magnus-Arkitektur&Handverk

    这座位于挪威卑尔根的小屋在探索木材的材料特性的过程中,形成了一种独特而严谨的语言。该汗蒸房采用云杉木材骨架以及由薄道格拉斯冷杉板制成的墙壁,以实现“皮肤”式围护系统的“可呼吸性”。另考虑到木材随温湿变化收缩、膨胀的材料特性,设计师还对相关部件的活动性进行了调整。

    10座实验性小屋,探讨材料与建造插图35 “Schwitzhütte” Sweat Lodge / Paul Johann Magnus - Arkitektur & Håndverk. Image © Paul Johann Magnus

    10座实验性小屋,探讨材料与建造插图36 “Schwitzhütte” Sweat Lodge / Paul Johann Magnus - Arkitektur & Håndverk. Image © Paul Johann Magnus

    10座实验性小屋,探讨材料与建造插图37 “Schwitzhütte” Sweat Lodge / Paul Johann Magnus - Arkitektur & Håndverk. Image © Paul Johann Magnus

    10座实验性小屋,探讨材料与建造插图38 “Schwitzhütte” Sweat Lodge / Paul Johann Magnus - Arkitektur & Håndverk. Image © Paul Johann Magnus

    10座实验性小屋,探讨材料与建造插图39 “Schwitzhütte” Sweat Lodge / Paul Johann Magnus - Arkitektur & Håndverk. Image © Paul Johann Magnus

    多功能工作室 / Practice Architecture + Unit 7

    这个可扩展的工作室由学生设计,仅在12天内建造完成,可适应不同场地以及不同功能的项目。该设计采用云杉螺柱、胶合板、软木底脚、木纤维隔热材料、大麻纤维生物树脂波纹覆层板组合形成屋顶构造层,与现场浇筑的麻制混凝土相连接。这些可持续进行碳捕获的定制材料的应用,为建筑作为“有效的碳负”提供了可能。

    10座实验性小屋,探讨材料与建造插图40 Polyvalent Studio / Practice Architecture + Unit 7, London Metropolitan University. Image © David Grandorge

    10座实验性小屋,探讨材料与建造插图41 Polyvalent Studio / Practice Architecture + Unit 7, London Metropolitan University. Image © David Grandorge

    10座实验性小屋,探讨材料与建造插图42 Polyvalent Studio / Practice Architecture + Unit 7, London Metropolitan University. Image Courtesy of Practice Architecture + Unit 7, London Metropolitan University

    10座实验性小屋,探讨材料与建造插图43 Polyvalent Studio / Practice Architecture + Unit 7, London Metropolitan University. Image Courtesy of Practice Architecture + Unit 7, London Metropolitan University

    永久露营设施 / Casey Brown Architecture

    这座外表包铜的塔屋,其室内采用了木材和玻璃两种元素,可支持一到两人的日常起居。包铜外立面可向北、东、西三个方向开敞,形成宽绰连廊屋顶的同时,将室内外空间连为一体。这一结构在关闭时,既保障了使用者的隐私性,亦可阻隔室外可能发生的灌木火灾。多层墙体的设计以及通风的顶部底部,起到了隔离内部结构,使其免受高温、寒风影响的作用。

    译者:周千沁

    10座实验性小屋,探讨材料与建造插图44 Permanent Camping / Casey Brown Architecture. Image © Rob Brown

    10座实验性小屋,探讨材料与建造插图45 Permanent Camping / Casey Brown Architecture. Image © Penny Clay

    10座实验性小屋,探讨材料与建造插图46 Permanent Camping / Casey Brown Architecture. Image © Penny Clay

    10座实验性小屋,探讨材料与建造插图47 Permanent Camping / Casey Brown Architecture. Image © Penny Clay

    10座实验性小屋,探讨材料与建造插图48 Permanent Camping / Casey Brown Architecture. Image Courtesy of Casey Brown Architecture

    内容推荐:勒·柯布西耶自由平面,谈开放式概念

头像

Lilly Cao

我还没有学会写个人说明!

相关推荐

暂无相关文章!

微信扫一扫,分享到朋友圈

10座实验性小屋,探讨材料与建造
返回顶部

显示

忘记密码?

显示

显示

获取验证码

Close